Constructing the Discriminative Kernels Using GMM for Text-Independent Speaker Identification
نویسندگان
چکیده
In this paper, a class of GMM-based discriminative kernels is proposed for speaker identification. We map an utterance vector into a matrix by finding the sequence of components, which have the maximum likelihood in the GMM for the all frame vectors. And the weights matrix was used, which were got by the GMM's parameters. Then the SVMs are used for classification. A one-versus-rest fashion is used for the c class problem. Results on YOHO in text-independent case show that the method can improve the performance greatly compared with the basic GMM.
منابع مشابه
In-set/out-of-set speaker identification based on discriminative speech frame selection
In this paper, we propose a novel discriminative speech frame selection (DSFS) scheme for the problem of in-set/out-of-set speaker identification, which seeks to decrease the similarity between speaker models and background model (or antispeaker model), and increase the accuracy of speaker identification. The working scheme of DSFS consists of two steps: speech frame analysis and discriminative...
متن کاملDiscriminative training of GMM using a modified EM algorithm for speaker recognition
In this paper, we present a new discriminative training method for Gaussian Mixture Models (GMM) and its application for the text-independent speaker recognition. The objective of this method is to maximize the frame level normalized likelihoods of the training data. That is why we call it the Maximum Normalized Likelihood Estimation (MNLE). In contrast to other discriminative algorithms, the o...
متن کاملComparison of Clustering Algorithms for Speaker Identification
In this paper we consider the problem of text-independent speaker identification that refers to acoustic recognition research. Many different techniques have been presented over past several decades. A stateof-the-art technique uses Gaussian Mixtures (GMM) for modeling speaker data distribution presented by MFCC [1] or LPCC [2] features. The classification is obtained by choosing the speaker cl...
متن کاملEnhancing GMM scores using SVM "hints"
This paper proposes a classification scheme that combines statistical models and support vector machines. It exploits the fact (observed in [1]) that GMM and SVM classifiers with roughly the same level of performance produce uncorrelated errors. We describe a novel scheme which employs an SVM classifier as an “advisor” to the GMM classifier in uncertain cases. The utility of the combined genera...
متن کاملImproving GMM-UBM speaker verification using discriminative feedback adaptation
The Gaussian Mixture Model Universal Background Model (GMM-UBM) system is one of the predominant approaches for text-independent speaker verification, because both the target speaker model and the impostor model (UBM) have generalization ability to handle “unseen” acoustic patterns. However, since GMM-UBM uses a common anti-model, namely UBM, for all target speakers, it tends to be weak in reje...
متن کامل